Parameter consistency and quadratically constrained errors-in-variables least-squares identification

نویسندگان

  • Harish J. Palanthandalam-Madapusi
  • Tobin H. Van Pelt
  • Dennis S. Bernstein
چکیده

In this article, we investigate the consistency of parameter estimates obtained from least-squares identification with a quadratic parameter constraint. For generality, we consider infinite impulse-response systems with coloured input and output noise. In the case of finite data, we show that there always exists a possibly indefinite quadratic constraint depending on the noise realisation that results in a constrained optimisation problem that yields the true parameters of the system when a persistency condition is satisfied. When the noise covariance matrix is known to within a scalar multiple, we prove that solutions of the quadratically constrained least-squares (QCLs) estimator with a semidefinite constraint matrix are both unbiased and consistent in the sense that the averaged problem and limiting problem produce, respectively, unbiased and true (with probability 1) estimators. In addition, we provide numerical results that illustrate these properties of the QCLS estimator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RESEARCH ARTICLE Parameter Consistency and Quadratically Constrained Errors-in-Variables Least-Squares Identification

In this paper we investigate the consistency of parameter estimates obtained from least squares identification with a quadratic parameter constraint. For generality, we consider infinite impulse response systems with colored input and output noise. In the case of finite data, we show that there always exists a possibly indefinite quadratic constraint depending on the noise realization that yiel...

متن کامل

Consistency of the structured total least squares estimator in a multivariate errors-in-variables model

The structured total least squares estimator, defined via a constrained optimization problem, is a generalization of the total least squares estimator when the data matrix and the applied correction satisfy given structural constraints. In the paper, an affine structure with additional assumptions is considered. In particular, Toeplitz and Hankel structured, noise free and unstructured blocks a...

متن کامل

Empirical Likelihood Confidence Region for Parameters in Semi-linear Errors-in-Variables Models

This paper proposes a constrained empirical likelihood confidence region for a parameter in the semi-linear errors-in-variables model. The confidence region is constructed by combining the score function corresponding to the squared orthogonal distance with a constraint on the parameter, and it overcomes that the solution of limiting mean estimation equations is not unique. It is shown that the...

متن کامل

Bias-compensation based method for errors-in-variables model identification

It is well known that least-squares (LS) method gives biased parameter estimates when the input and output measurements are corrupted by noise. One possible approach for solving this bias problem is the bias-compensation based method such as the bias-compensated least-squares (BCLS) method. In this paper, a new bias-compnesation based method is proposed for identification of noisy input-output ...

متن کامل

On the Consistency of Certain Identification Methods for Linear Parameter Varying Systems

Abstract: The consistency of identification methods for input-output models of Linear Parameter Varying systems is considered. In order to perform a consistency analysis the applicability of ergodicity is required, which is not obvious with these types of nonstationary systems. It is therefore shown that, when the scheduling parameter satisfies certain conditions, an ergodicity-type result can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Control

دوره 83  شماره 

صفحات  -

تاریخ انتشار 2010